3 Heaps
Following heap structures implement and provide the functions empty?, insert, find-min/max, delete-min/max, merge and sorted-list. All the heaps are polymorphic.
3.1 Binomial Heap
(require pfds/heap/binomial) | package: pfds |
Binomial Heaps are nothing but mergeable priority heaps. To avoid the confusion with FIFO queues, they are referred as heaps. Heaps are similar to the sortable collections but the difference is that comparison function is fixed when the heap is created. Binomial heaps are a binary representation with heap-ordered, binomial trees. A tree is heap-ordered if it maintains min-heap or max-heap property. Provides worst case running time of O(log(n)) for the operations insert, find-min/max, delete-min/max and merge.
syntax
(Heap A)
> (heap < 1 2 3 4 5 6) - : (Heap Positive-Byte)
#<Heap>
In the above example, the binomial heap obtained will have elements 1 thru’ 6 with < as the comparison function.
> (insert 10 (heap < 1 2 3)) - : (Heap Positive-Byte)
#<Heap>
In the above example, insert adds the element 10 to (heap < 1 2 3).
procedure
(find-min/max heap) → A
heap : (Heap A)
> (find-min/max (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Byte]
1
> (find-min/max (heap > 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Byte]
6
> (find-min/max (heap <)) find-min/max: given heap is empty
procedure
(delete-min/max heap) → (Heap A)
heap : (Heap A)
> (delete-min/max (heap < 1 2 3 4 5 6)) - : (Heap Positive-Byte)
#<Heap>
> (delete-min/max (heap > 1 2 3 4 5 6)) - : (Heap Positive-Byte)
#<Heap>
> (delete-min/max (heap <)) delete-min/max: given heap is empty
In the above example, (delete-min/max (heap < 1 2 3 4 5 6)), deletes the element 1(min) from the heap. And (delete-min/max (heap > 1 2 3 4 5 6)), deletes the element 6(max) from the heap.
If the comparison functions do not have the same properties, merged heap might lose its heap-order.
> (define bheap1 (heap < 1 2 3 4 5 6))
> (define bheap2 (heap (λ: ([a : Integer] [b : Integer]) (< a b)) 10 20 30 40 50 60))
> (merge bheap1 bheap2) eval:15:0: Type Checker: Polymorphic function `merge' could
not be applied to arguments:
Argument 1:
Expected: (Heap A)
Given: (Heap Positive-Byte)
Argument 2:
Expected: (Heap A)
Given: (Heap Integer)
in: bheap2
In the above example, (merge bheap1 bheap2), merges the heaps and < will become the comparison function for the merged heap.
procedure
(sorted-list heap) → (Listof A)
heap : (Heap A)
> (sorted-list (heap > 1 2 3 4 5 6)) - : (Listof Positive-Byte)
'(6 5 4 3 2 1)
> (sorted-list (heap < 1 2 3 4 5 6)) - : (Listof Positive-Byte)
'(1 2 3 4 5 6)
> (sorted-list (map < add1 (heap < 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(2 3 4 5 6 7)
> (sorted-list (map < * (heap < 1 2 3 4 5 6) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(1 4 9 16 25 36)
procedure
(fold func init hep1 hep2 ...) → C
func : (C A B ... B -> C) init : C hep1 : (Heap A) hep2 : (Heap B)
fold currently does not produce correct results when the given function is non-commutative.
> (fold + 0 (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (fold * 1 (heap < 1 2 3 4 5 6) (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
> (define hep (heap < 1 2 3 4 5 6))
> (sorted-list (filter (λ: ([x : Integer]) (> x 5)) hep)) - : (Listof Positive-Byte)
'(6)
> (sorted-list (filter (λ: ([x : Integer]) (< x 5)) hep)) - : (Listof Positive-Byte)
'(1 2 3 4)
> (sorted-list (filter (λ: ([x : Integer]) (<= x 5)) hep)) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (sorted-list (remove (λ: ([x : Integer]) (> x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (sorted-list (remove (λ: ([x : Integer]) (< x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(5 6)
> (sorted-list (remove (λ: ([x : Integer]) (<= x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(6)
procedure
(andmap func heap1 heap2 ...) → Boolean
func : (A B ... B -> Boolean) heap1 : (Heap A) heap2 : (Heap B)
> (andmap even? (heap < 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (heap < 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (heap < -1 -2)) - : Boolean
#t
procedure
(ormap func heap1 heap2 ...) → Boolean
func : (A B ... B -> Boolean) heap1 : (Heap A) heap2 : (Heap B)
> (ormap even? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (heap < -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (heap < 1 -2)) - : Boolean
#t
procedure
(build-heap size func comp) → (Heap A)
size : Natural func : (Natural -> A) comp : (A A -> Boolean)
> (sorted-list (build-heap 5 (λ:([x : Integer]) (add1 x)) <)) - : (Listof Integer)
'(1 2 3 4 5)
> (sorted-list (build-heap 5 (λ:([x : Integer]) (* x x)) <)) - : (Listof Integer)
'(0 1 4 9 16)
3.2 Skew Binomial Heap
(require pfds/heap/skew-binomial) | package: pfds |
Skew Binomial Heaps are Binomial Heaps with hybrid numerical representation for heaps based on both skew binary numbers. Skew binary number representation is used since incrementing a skew binary number is quick and simple. Provides worst case running time of O(log(n)) for the operations find-min/max, delete-min/max and merge. And worst case running time of O(1) for the insert operation.
syntax
(Heap A)
> (heap < 1 2 3 4 5 6) - : (Heap Positive-Byte)
#<Heap>
In the above example, the binomial heap obtained will have elements 1 thru’ 6 with < as the comparison function.
> (insert 10 (heap < 1 2 3 4 5 6)) - : (Heap Positive-Byte)
#<Heap>
In the above example, insert adds the element 10 to (heap < 1 2 3 4 5 6).
procedure
(find-min/max heap) → A
heap : (Heap A)
> (find-min/max (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Byte]
1
> (find-min/max (heap > 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Byte]
6
> (find-min/max (heap <)) find-min/max: given heap is empty
procedure
(delete-min/max heap) → (Heap A)
heap : (Heap A)
> (delete-min/max (heap < 1 2 3 4 5 6)) - : (Heap Positive-Byte)
#<Heap>
> (delete-min/max (heap > 1 2 3 4 5 6)) - : (Heap Positive-Byte)
#<Heap>
> (delete-min/max (heap <)) delete-min/max: given heap is empty
In the above example, (delete-min/max (heap < 1 2 3 4 5 6)) deletes 1 and returns (delete-min/max (heap < 2 3 4 5 6)). And (delete-min/max (heap > 1 2 3 4 5 6)) deletes 6 and returns (delete-min/max (heap < 1 2 3 4 5)).
If the comparison functions do not have the same properties, merged heap might lose its heap-order.
> (define bheap1 (heap < 1 2 3 4 5 6))
> (define bheap2 (heap (λ: ([a : Integer] [b : Integer]) (< a b)) 10 20 30 40 50 60))
> (merge bheap1 bheap2) eval:15:0: Type Checker: Polymorphic function `merge' could
not be applied to arguments:
Argument 1:
Expected: (Heap A)
Given: (Heap Positive-Byte)
Argument 2:
Expected: (Heap A)
Given: (Heap Integer)
in: bheap2
In the above example, (merge bheap1 bheap2), merges the heaps and < will become the comparison function for the merged heap.
procedure
(sorted-list heap) → (Listof A)
heap : (Heap A)
> (sorted-list (heap > 1 2 3 4 5 6)) - : (Listof Positive-Byte)
'(6 5 4 3 2 1)
> (sorted-list (heap < 1 2 3 4 5 6)) - : (Listof Positive-Byte)
'(1 2 3 4 5 6)
> (sorted-list (map < add1 (heap < 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(2 3 4 5 6 7)
> (sorted-list (map < * (heap < 1 2 3 4 5 6) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(1 4 9 16 25 36)
procedure
(fold func init hep1 hep2 ...) → C
func : (C A B ... B -> C) init : C hep1 : (Heap A) hep2 : (Heap B)
fold currently does not produce correct results when the given function is non-commutative.
> (fold + 0 (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (fold * 1 (heap < 1 2 3 4 5 6) (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
> (define hep (heap < 1 2 3 4 5 6))
> (sorted-list (filter (λ: ([x : Integer]) (> x 5)) hep)) - : (Listof Positive-Byte)
'(6)
> (sorted-list (filter (λ: ([x : Integer]) (< x 5)) hep)) - : (Listof Positive-Byte)
'(1 2 3 4)
> (sorted-list (filter (λ: ([x : Integer]) (<= x 5)) hep)) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (sorted-list (remove (λ: ([x : Integer]) (> x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (sorted-list (remove (λ: ([x : Integer]) (< x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(5 6)
> (sorted-list (remove (λ: ([x : Integer]) (<= x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(6)
procedure
(andmap func heap1 heap2 ...) → Boolean
func : (A B ... B -> Boolean) heap1 : (Heap A) heap2 : (Heap B)
> (andmap even? (heap < 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (heap < 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (heap < -1 -2)) - : Boolean
#t
procedure
(ormap func heap1 heap2 ...) → Boolean
func : (A B ... B -> Boolean) heap1 : (Heap A) heap2 : (Heap B)
> (ormap even? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (heap < -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (heap < 1 -2)) - : Boolean
#t
procedure
(build-heap size func comp) → (Heap A)
size : Natural func : (Natural -> A) comp : (A A -> Boolean)
> (sorted-list (build-heap 5 (λ:([x : Integer]) (add1 x)) <)) - : (Listof Integer)
'(1 2 3 4 5)
> (sorted-list (build-heap 5 (λ:([x : Integer]) (* x x)) <)) - : (Listof Integer)
'(0 1 4 9 16)
3.3 Leftist Heap
(require pfds/heap/leftist) | package: pfds |
Leftist heaps are heap-ordered binary trees that satisfy the leftist property: the rank of any left child is at least as large as the rank of its right sibling. The rank of a node is defined to be the length of its right spine (i.e., the rightmost path from the node in question to an empty node). A simple consequence of the leftist property is that the right spine of any node is always the shortest path to an empty node.
Provides worst case running time of O(log(n)) for the operations insert, delete-min/max and merge and a worst case running time of O(1) for find-min/max.
syntax
(Heap A)
> (heap < 1 2 3 4 5 6) - : (LeftistHeap Positive-Byte)
#<LeftistHeap>
In the above example, the leftist heap obtained will have elements 1 thru’ 6 with < as the comparison function.
procedure
heap : (Heap A)
> (empty? (heap < 1 2 3 4 5 6)) - : Boolean
#f
> (empty? empty) - : Boolean
#t
> (insert 10 (heap < 1 2 3 4 5 6)) - : (LeftistHeap Positive-Byte)
#<LeftistHeap>
In the above example, insert adds the element 10 to the heap (heap < 1 2 3 4 5 6).
procedure
(find-min/max heap) → A
heap : (Heap A)
> (find-min/max (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Byte]
1
> (find-min/max (heap > 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Byte]
6
> (find-min/max (heap <)) find-min/max: given heap is empty
In the above example, (find-min/max lheap), returns the smallest element in lheap which happens to be 1.
procedure
(delete-min/max heap) → (Heap A)
heap : (Heap A)
> (delete-min/max (heap < 1 2 3 4 5 6)) - : (LeftistHeap Positive-Byte)
#<LeftistHeap>
> (delete-min/max (heap > 1 2 3 4 5 6)) - : (LeftistHeap Positive-Byte)
#<LeftistHeap>
> (delete-min/max (heap <)) delete-min/max: given heap is empty
In the above example, (delete-min/max (heap < 1 2 3 4 5 6)) deletes min element 1 from the heap and (delete-min/max (heap > 1 2 3 4 5 6)) deletes max element 6 from the heap.
If the comparison functions do not have the same properties, merged heap might lose its heap-order.
> (define lheap1 (heap < 1 2 3 4 5 6))
> (define lheap2 (heap (λ: ([a : Integer] [b : Integer]) (< a b)) 10 20 30 40 50 60))
> (merge lheap1 lheap2) eval:15:0: Type Checker: Polymorphic function `merge' could
not be applied to arguments:
Argument 1:
Expected: (LeftistHeap A)
Given: (LeftistHeap Positive-Byte)
Argument 2:
Expected: (LeftistHeap A)
Given: (LeftistHeap Integer)
in: lheap2
In the above example, (merge lheap1 lheap2), merges the heaps and < will become the comparison function for the merged heap.
procedure
(sorted-list heap) → (Listof A)
heap : (Heap A)
> (sorted-list (heap > 1 2 3 4 5 6)) - : (Listof Positive-Byte)
'(6 5 4 3 2 1)
> (sorted-list (heap < 1 2 3 4 5 6)) - : (Listof Positive-Byte)
'(1 2 3 4 5 6)
> (sorted-list (map < add1 (heap < 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(2 3 4 5 6 7)
> (sorted-list (map < * (heap < 1 2 3 4 5 6) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(1 4 9 16 25 36)
procedure
(fold func init hep1 hep2 ...) → C
func : (C A B ... B -> C) init : C hep1 : (Heap A) hep2 : (Heap B)
fold currently does not produce correct results when the given function is non-commutative.
> (fold + 0 (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (fold * 1 (heap < 1 2 3 4 5 6) (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
> (define hep (heap < 1 2 3 4 5 6))
> (sorted-list (filter (λ: ([x : Integer]) (> x 5)) hep)) - : (Listof Positive-Byte)
'(6)
> (sorted-list (filter (λ: ([x : Integer]) (< x 5)) hep)) - : (Listof Positive-Byte)
'(1 2 3 4)
> (sorted-list (filter (λ: ([x : Integer]) (<= x 5)) hep)) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (sorted-list (remove (λ: ([x : Integer]) (> x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (sorted-list (remove (λ: ([x : Integer]) (< x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(5 6)
> (sorted-list (remove (λ: ([x : Integer]) (<= x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(6)
procedure
(andmap func heap1 heap2 ...) → Boolean
func : (A B ... B -> Boolean) heap1 : (Heap A) heap2 : (Heap B)
> (andmap even? (heap < 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (heap < 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (heap < -1 -2)) - : Boolean
#t
procedure
(ormap func heap1 heap2 ...) → Boolean
func : (A B ... B -> Boolean) heap1 : (Heap A) heap2 : (Heap B)
> (ormap even? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (heap < -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (heap < 1 -2)) - : Boolean
#t
procedure
(build-heap size func comp) → (Heap A)
size : Natural func : (Natural -> A) comp : (A A -> Boolean)
> (sorted-list (build-heap 5 (λ:([x : Integer]) (add1 x)) <)) - : (Listof Integer)
'(1 2 3 4 5)
> (sorted-list (build-heap 5 (λ:([x : Integer]) (* x x)) <)) - : (Listof Integer)
'(0 1 4 9 16)
3.4 Splay Heap
(require pfds/heap/splay) | package: pfds |
Splay Heaps are very similar to balanced binary search trees. The difference between the two lies in the fact that Splay Heaps do not maintain any explicit balance information. Instead every operation restructures the tree with some simple transformations that increase the balance of the tree. Because of the restructuring on every operation, the worst case running time of all the operations is O(n). But it can be easily shown that the amortized running time of is O(log(n)) for the all the main operations insert, find-min/max, delete-min/max and merge.
syntax
(Heap A)
> (heap < 1 2 3 4 5 6) - : (Heap Positive-Byte)
#<Heap>
In the above example, the splay heap obtained will have elements 1 thru’ 6 with < as the comparison function.
> (insert 10 (heap < 1 2 3 4 5 6)) - : (Heap Positive-Byte)
#<Heap>
In the above example, (insert 10 (heap < 1 2 3 4 5 6)) adds 10 to the heap (heap < 1 2 3 4 5 6).
procedure
(find-min/max heap) → A
heap : (Heap A)
> (find-min/max (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Byte]
1
> (find-min/max (heap > 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Byte]
6
> (find-min/max (heap <)) find-min/max: given heap is empty
procedure
(delete-min/max heap) → (Heap A)
heap : (Heap A)
> (delete-min/max (heap < 1 2 3 4 5 6)) - : (Heap Positive-Byte)
#<Heap>
> (delete-min/max (heap > 1 2 3 4 5 6)) - : (Heap Positive-Byte)
#<Heap>
> (delete-min/max (heap >)) delete-min/max: given heap is empty
In the above example, (delete-min/max (heap < 1 2 3 4 5 6)) deletes the smallest element 1. And (delete-min/max (heap > 1 2 3 4 5 6)) deletes the largest element 6.
If the comparison functions do not have the same properties, merged heap might lose its heap-order.
> (define sheap1 (heap < 1 2 3 4 5 6))
> (define sheap2 (heap (λ: ([a : Integer] [b : Integer]) (< a b)) 10 20 30 40 50 60))
> (merge sheap1 sheap2) eval:15:0: Type Checker: Polymorphic function `merge' could
not be applied to arguments:
Argument 1:
Expected: (Heap A)
Given: (Heap Positive-Byte)
Argument 2:
Expected: (Heap A)
Given: (Heap Integer)
in: sheap2
In the above example, (merge sheap1 sheap2), merges the heaps and < will become the comparison function for the merged heap.
procedure
(sorted-list heap) → (Listof A)
heap : (Heap A)
> (sorted-list (heap > 1 2 3 4 5 6)) - : (Listof Positive-Byte)
'(6 5 4 3 2 1)
> (sorted-list (heap < 1 2 3 4 5 6)) - : (Listof Positive-Byte)
'(1 2 3 4 5 6)
> (sorted-list (heap >)) - : (Listof Nothing)
'()
> (sorted-list (map < add1 (heap < 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(2 3 4 5 6 7)
> (sorted-list (map < * (heap < 1 2 3 4 5 6) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(1 4 9 16 25 36)
procedure
(fold func init hep1 hep2 ...) → C
func : (C A B ... B -> C) init : C hep1 : (Heap A) hep2 : (Heap B)
fold currently does not produce correct results when the given function is non-commutative.
> (fold + 0 (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (fold * 1 (heap < 1 2 3 4 5 6) (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
> (define hep (heap < 1 2 3 4 5 6))
> (sorted-list (filter (λ: ([x : Integer]) (> x 5)) hep)) - : (Listof Positive-Byte)
'(6)
> (sorted-list (filter (λ: ([x : Integer]) (< x 5)) hep)) - : (Listof Positive-Byte)
'(1 2 3 4)
> (sorted-list (filter (λ: ([x : Integer]) (<= x 5)) hep)) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (sorted-list (remove (λ: ([x : Integer]) (> x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (sorted-list (remove (λ: ([x : Integer]) (< x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(5 6)
> (sorted-list (remove (λ: ([x : Integer]) (<= x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(6)
procedure
(andmap func heap1 heap2 ...) → Boolean
func : (A B ... B -> Boolean) heap1 : (Heap A) heap2 : (Heap B)
> (andmap even? (heap < 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (heap < 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (heap < -1 -2)) - : Boolean
#t
procedure
(ormap func heap1 heap2 ...) → Boolean
func : (A B ... B -> Boolean) heap1 : (Heap A) heap2 : (Heap B)
> (ormap even? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (heap < -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (heap < 1 -2)) - : Boolean
#t
procedure
(build-heap size func comp) → (Heap A)
size : Natural func : (Natural -> A) comp : (A A -> Boolean)
> (sorted-list (build-heap 5 (λ:([x : Integer]) (add1 x)) <)) - : (Listof Integer)
'(1 2 3 4 5)
> (sorted-list (build-heap 5 (λ:([x : Integer]) (* x x)) <)) - : (Listof Integer)
'(0 1 4 9 16)
3.5 Pairing Heap
(require pfds/heap/pairing) | package: pfds |
Pairing Heap is a type of heap which has a very simple implementation and has extremely good performance in practice. Pairing Heaps provide a worst case running time of O(1) for the operations insert find-min/max merge. And delete-min/max has a amortized running time of O(log(n)).
syntax
(Heap A)
> (heap < 1 2 3 4 5 6) - : (PairingHeap Positive-Byte)
#<PairingHeap>
In the above example, the pairing heap obtained will have elements 1 thru’ 6 with < as the comparison function.
> (insert 10 (heap < 1 2 3 4 5 6)) - : (PairingHeap Positive-Byte)
#<PairingHeap>
In the above example, (insert 10 (heap < 1 2 3 4 5 6)) adds the element 10 to (heap < 1 2 3 4 5 6).
procedure
(find-min/max heap) → A
heap : (Heap A)
> (find-min/max (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Byte]
1
> (find-min/max (heap > 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Byte]
6
> (find-min/max (heap >)) find-min/max: given heap is empty
procedure
(delete-min/max heap) → (Heap A)
heap : (Heap A)
> (delete-min/max (heap < 1 2 3 4 5 6)) - : (PairingHeap Positive-Byte)
#<PairingHeap>
> (delete-min/max (heap > 1 2 3 4 5 6)) - : (PairingHeap Positive-Byte)
#<PairingHeap>
> (delete-min/max (heap <)) delete-min/max: given heap is empty
In the above example, (delete-min/max (heap < 1 2 3 4 5 6)), deletes the smallest element 1 in the heap (heap < 1 2 3 4 5 6). And (delete-min/max (heap > 1 2 3 4 5 6)) deletes the largest element which is 6.
If the comparison functions do not have the same properties, merged heap might lose its heap-order.
> (define pheap1 (heap < 1 2 3 4 5 6))
> (define pheap2 (heap (λ: ([a : Integer] [b : Integer]) (< a b)) 10 20 30 40 50 60))
> (merge pheap1 pheap2) eval:15:0: Type Checker: Polymorphic function `merge' could
not be applied to arguments:
Argument 1:
Expected: (PairingHeap A)
Given: (PairingHeap Positive-Byte)
Argument 2:
Expected: (PairingHeap A)
Given: (PairingHeap Integer)
in: pheap2
In the above example, (merge pheap1 pheap2), merges the heaps and < will become the comparison function for the merged heap.
procedure
(sorted-list heap) → (Listof A)
heap : (Heap A)
> (sorted-list (heap > 1 2 3 4 5 6)) - : (Listof Positive-Byte)
'(6 5 4 3 2 1)
> (sorted-list (heap < 1 2 3 4 5 6)) - : (Listof Positive-Byte)
'(1 2 3 4 5 6)
> (sorted-list (map < add1 (heap < 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(2 3 4 5 6 7)
> (sorted-list (map < * (heap < 1 2 3 4 5 6) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(1 4 9 16 25 36)
procedure
(fold func init hep1 hep2 ...) → C
func : (C A B ... B -> C) init : C hep1 : (Heap A) hep2 : (Heap B)
fold currently does not produce correct results when the given function is non-commutative.
> (fold + 0 (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (fold * 1 (heap < 1 2 3 4 5 6) (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
> (define hep (heap < 1 2 3 4 5 6))
> (sorted-list (filter (λ: ([x : Integer]) (> x 5)) hep)) - : (Listof Positive-Byte)
'(6)
> (sorted-list (filter (λ: ([x : Integer]) (< x 5)) hep)) - : (Listof Positive-Byte)
'(1 2 3 4)
> (sorted-list (filter (λ: ([x : Integer]) (<= x 5)) hep)) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (sorted-list (remove (λ: ([x : Integer]) (> x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (sorted-list (remove (λ: ([x : Integer]) (< x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(5 6)
> (sorted-list (remove (λ: ([x : Integer]) (<= x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(6)
procedure
(andmap func heap1 heap2 ...) → Boolean
func : (A B ... B -> Boolean) heap1 : (Heap A) heap2 : (Heap B)
> (andmap even? (heap < 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (heap < 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (heap < -1 -2)) - : Boolean
#t
procedure
(ormap func heap1 heap2 ...) → Boolean
func : (A B ... B -> Boolean) heap1 : (Heap A) heap2 : (Heap B)
> (ormap even? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (heap < -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (heap < 1 -2)) - : Boolean
#t
procedure
(build-heap size func comp) → (Heap A)
size : Natural func : (Natural -> A) comp : (A A -> Boolean)
> (sorted-list (build-heap 5 (λ:([x : Integer]) (add1 x)) <)) - : (Listof Integer)
'(1 2 3 4 5)
> (sorted-list (build-heap 5 (λ:([x : Integer]) (* x x)) <)) - : (Listof Integer)
'(0 1 4 9 16)
3.6 Lazy Pairing Heap
(require pfds/heap/lazy-pairing) | package: pfds |
Lazy Pairing Heap is very similar to Pairing Heap. The only difference between the two is, as the name suggests, Lazy Pairing Heap is lazy in nature.
syntax
(Heap A)
> (heap < 1 2 3 4 5 6) - : (PairingHeap Positive-Byte)
#<PairingHeap>
In the above example, the lazy pairing heap obtained will have elements 1 thru’ 6 with < as the comparison function.
> (insert 10 (heap < 1 2 3 4 5 6)) - : (PairingHeap Positive-Byte)
#<PairingHeap>
In the above example, (insert 10 (heap < 1 2 3 4 5 6)) adds the element 10 to the heap (heap < 1 2 3 4 5 6).
procedure
(find-min/max heap) → A
heap : (Heap A)
> (find-min/max (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Byte]
1
> (find-min/max (heap > 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Byte]
6
> (find-min/max (heap <)) find-min/max: given heap is empty
procedure
(delete-min/max heap) → (Heap A)
heap : (Heap A)
> (delete-min/max (heap < 1 2 3 4 5 6)) - : (PairingHeap Positive-Byte)
#<PairingHeap>
> (delete-min/max (heap > 1 2 3 4 5 6)) - : (PairingHeap Positive-Byte)
#<PairingHeap>
> (delete-min/max (heap >)) delete-min/max: given heap is empty
If the comparison functions do not have the same properties, merged heap might lose its heap-order.
> (define pheap1 (heap < 1 2 3 4 5 6))
> (define pheap2 (heap (λ: ([a : Integer] [b : Integer]) (< a b)) 10 20 30 40 50 60))
> (merge pheap1 pheap2) eval:15:0: Type Checker: Polymorphic function `merge' could
not be applied to arguments:
Argument 1:
Expected: (PairingHeap A)
Given: (PairingHeap Positive-Byte)
Argument 2:
Expected: (PairingHeap A)
Given: (PairingHeap Integer)
in: pheap2
In the above example, (merge pheap1 pheap2), merges the heaps and < will become the comparison function for the merged heap.
procedure
(sorted-list heap) → (Listof A)
heap : (Heap A)
> (sorted-list (heap > 1 2 3 4 5 6)) - : (Listof Positive-Byte)
'(6 5 4 3 2 1)
> (sorted-list (heap < 1 2 3 4 5 6)) - : (Listof Positive-Byte)
'(1 2 3 4 5 6)
> (sorted-list (map < add1 (heap < 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(2 3 4 5 6 7)
> (sorted-list (map < * (heap < 1 2 3 4 5 6) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(1 4 9 16 25 36)
procedure
(fold func init hep1 hep2 ...) → C
func : (C A B ... B -> C) init : C hep1 : (Heap A) hep2 : (Heap B)
fold currently does not produce correct results when the given function is non-commutative.
> (fold + 0 (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (fold * 1 (heap < 1 2 3 4 5 6) (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
> (define hep (heap < 1 2 3 4 5 6))
> (sorted-list (filter (λ: ([x : Integer]) (> x 5)) hep)) - : (Listof Positive-Byte)
'(6)
> (sorted-list (filter (λ: ([x : Integer]) (< x 5)) hep)) - : (Listof Positive-Byte)
'(1 2 3 4)
> (sorted-list (filter (λ: ([x : Integer]) (<= x 5)) hep)) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (sorted-list (remove (λ: ([x : Integer]) (> x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (sorted-list (remove (λ: ([x : Integer]) (< x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(5 6)
> (sorted-list (remove (λ: ([x : Integer]) (<= x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(6)
procedure
(andmap func heap1 heap2 ...) → Boolean
func : (A B ... B -> Boolean) heap1 : (Heap A) heap2 : (Heap B)
> (andmap even? (heap < 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (heap < 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (heap < -1 -2)) - : Boolean
#t
procedure
(ormap func heap1 heap2 ...) → Boolean
func : (A B ... B -> Boolean) heap1 : (Heap A) heap2 : (Heap B)
> (ormap even? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (heap < -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (heap < 1 -2)) - : Boolean
#t
procedure
(build-heap size func comp) → (Heap A)
size : Natural func : (Natural -> A) comp : (A A -> Boolean)
> (sorted-list (build-heap 5 (λ:([x : Integer]) (add1 x)) <)) - : (Listof Integer)
'(1 2 3 4 5)
> (sorted-list (build-heap 5 (λ:([x : Integer]) (* x x)) <)) - : (Listof Integer)
'(0 1 4 9 16)
3.7 Bootstrapped Heap
(require pfds/heap/bootstrapped) | package: pfds |
Bootstrapped heaps are heaps with efficient merging. The bootstrapped heap is implemented with structural abstraction over a less efficient heap implementation to get a worst case running time of O(1) for the operations insert, find-min/max and merge and worst case running time of O(log(n)) for delete-min/max operation. This implementation abstracts over skew binomial heaps. For skew binomial heaps, see Skew Binomial Heap.
syntax
(Heap A)
> (heap < 1 2 3 4 5 6) - : (BSHeap Positive-Byte)
#<BSHeap>
In the above example, the bootstrapped heap obtained will have elements 1 thru’ 6 with < as the comparison function.
> (insert 10 (heap < 1 2 3 4 5 6)) - : (BSHeap Positive-Byte)
#<BSHeap>
In the above example, insert adds the element 10 to the heap (heap < 1 2 3 4 5 6).
procedure
(find-min/max heap) → A
heap : (Heap A)
> (find-min/max (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Byte]
1
> (find-min/max (heap > 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Byte]
6
> (find-min/max (heap <)) find-min/max: given heap is empty
procedure
(delete-min/max heap) → (Heap A)
heap : (Heap A)
> (delete-min/max (heap < 1 2 3 4 5 6)) - : (BSHeap Positive-Byte)
#<BSHeap>
> (delete-min/max (heap > 1 2 3 4 5 6)) - : (BSHeap Positive-Byte)
#<BSHeap>
> (delete-min/max (heap <)) delete-min/max: given heap is empty
In the above example, (delete-min/max (heap < 1 2 3 4 5 6)), deletes element 1 from (heap < 1 2 3 4 5 6). And (delete-min/max (heap > 1 2 3 4 5 6)), deletes element 6 from (heap > 1 2 3 4 5 6).
If the comparison functions do not have the same properties, merged heap might lose its heap-order.
> (define bheap1 (heap < 1 2 3 4 5 6))
> (define bheap2 (heap (λ: ([a : Integer] [b : Integer]) (< a b)) 10 20 30 40 50 60))
> (merge bheap1 bheap2) eval:15:0: Type Checker: Polymorphic function `merge' could
not be applied to arguments:
Argument 1:
Expected: (BSHeap A)
Given: (BSHeap Positive-Byte)
Argument 2:
Expected: (BSHeap A)
Given: (BSHeap Integer)
in: bheap2
In the above example, (merge bheap1 bheap2), merges the heaps and < will become the comparison function for the merged heap.
procedure
(sorted-list heap) → (Listof A)
heap : (Heap A)
> (sorted-list (heap > 1 2 3 4 5 6)) - : (Listof Positive-Byte)
'(6 5 4 3 2 1)
> (sorted-list (heap < 1 2 3 4 5 6)) - : (Listof Positive-Byte)
'(1 2 3 4 5 6)
In the above example, (sorted-list bheap), returns (6 5 4 3 2 1).
> (sorted-list (map < add1 (heap < 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(2 3 4 5 6 7)
> (sorted-list (map < * (heap < 1 2 3 4 5 6) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(1 4 9 16 25 36)
procedure
(fold func init hep1 hep2 ...) → C
func : (C A B ... B -> C) init : C hep1 : (Heap A) hep2 : (Heap B)
fold currently does not produce correct results when the given function is non-commutative.
> (fold + 0 (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (fold * 1 (heap < 1 2 3 4 5 6) (heap < 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
> (define hep (heap < 1 2 3 4 5 6))
> (sorted-list (filter (λ: ([x : Integer]) (> x 5)) hep)) - : (Listof Positive-Byte)
'(6)
> (sorted-list (filter (λ: ([x : Integer]) (< x 5)) hep)) - : (Listof Positive-Byte)
'(1 2 3 4)
> (sorted-list (filter (λ: ([x : Integer]) (<= x 5)) hep)) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (sorted-list (remove (λ: ([x : Integer]) (> x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (sorted-list (remove (λ: ([x : Integer]) (< x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(5 6)
> (sorted-list (remove (λ: ([x : Integer]) (<= x 5)) (heap < 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(6)
procedure
(andmap func heap1 heap2 ...) → Boolean
func : (A B ... B -> Boolean) heap1 : (Heap A) heap2 : (Heap B)
> (andmap even? (heap < 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (heap < 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (heap < -1 -2)) - : Boolean
#t
procedure
(ormap func heap1 heap2 ...) → Boolean
func : (A B ... B -> Boolean) heap1 : (Heap A) heap2 : (Heap B)
> (ormap even? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (heap < 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (heap < -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (heap < 1 -2)) - : Boolean
#t
procedure
(build-heap size func comp) → (Heap A)
size : Natural func : (Natural -> A) comp : (A A -> Boolean)
> (sorted-list (build-heap 5 (λ:([x : Integer]) (add1 x)) <)) - : (Listof Integer)
'(1 2 3 4 5)
> (sorted-list (build-heap 5 (λ:([x : Integer]) (* x x)) <)) - : (Listof Integer)
'(0 1 4 9 16)