Infix Expressions for Racket
1 Getting Started
$
1.1 Arithmetical Operations
1.2 Identifiers
1.3 Application
1.4 Lists
1.5 List Reference
1.6 Anonymous Functions
1.7 Square Roots
1.8 Comparisons
1.9 Logical Negation
1.10 Assignment
1.11 Sequencing
2 Examples
2.1 Example:   Fibonacci
2.2 Example:   Difference Between a Sum of Squares and the Square of a Sum
2.3 Example:   Pythagorean Triplets
2.4 Example:   Miller Rabin Primality Test
6.3.90.900

Infix Expressions for Racket

Jens Axel Søgaard <jensaxel@soegaard.net>

 (require infix) package: infix
This package provides infix notation for writing mathematical expressions.

1 Getting Started

A simple example, calculating 1+2*3.

  #lang racket
  (require infix)
  ($ "1+2*3")

Or with @-expressions:
  #lang at-exp racket
  (require infix)
  @${1+2*3}

syntax

($ str ...)

A macro that processes infix syntax.

1.1 Arithmetical Operations

The arithmetical operations +, -, *, / and ^ is written with standard mathematical notation. Normal parentheseses are used for grouping.

  #lang at-exp racket
  (require infix)
  @${2*(1+3^4)}   ; evaluates to 164

1.2 Identifiers

Identifiers refer to the current lexical scope:

  #lang at-exp racket
  (require infix)
  (define x 41)
  @${x+1}   ; evaluates to 42

1.3 Application

Function application use square brackets (as does Mathematica). Here sqrt is bound to the square root function defined in the language after at-exp, here the racket language.

  #lang at-exp racket
  (require infix)
  (display (format "The square root of 64 is ~a\n" @${sqrt[64]}))
  @${list[1,2,3]} ; evaluates to the list '(1 2 3)

1.4 Lists

Lists are written with curly brackets {}.

  #lang at-exp racket
  (require infix)
  @${{1,2,1+2}}  ; evaluates to '(1 2 3)

1.5 List Reference

List reference is written with double square brackets.

  #lang at-exp racket
  (require infix)
  (define xs '(a b c))
  @${xs[[1]]}  ; evaluates to b

1.6 Anonymous Functions

The syntax (λ ids . expr) where ids are a space separated list of identifiers evaluates to function in which the ids are bound in body expressions.

  #lang at-exp racket
  (require infix)
   
  @${ (λ.1)[] }          ; evaluates to 1
  @${ (λx.x+1)[2]}       ; evaluates to 3
  @${ (λx y.x+y+1)[1,2]} ; evaluates to 4

1.7 Square Roots

Square roots can be written with a literal square root:

  #lang at-exp racket
  (require infix)
  @${√4}     ; evaluates to 2
  @${√(2+2)}  ; evaluates to 2

1.8 Comparisons

The comparison operators <, =, >, <=, and >= are available. The syntaxes ≤ and ≥ for <= and >= respectively, works too. Inequality is tested with <>.

1.9 Logical Negation

Logical negations is written as ¬.

  #lang at-exp racket
  (require infix)
  (define true #t)
  @${¬true}      ; evaluates to #f
  @${¬(1<2)}     ; evaluates to #f

1.10 Assignment

Assignment is written with := .

1.11 Sequencing

A series of expresions can be evaluated by interspersing semi colons between the expressions.

  #lang at-exp racket

  (require infix)

  (define x 0)

  @${ x:=1 ;  x+3 }  ; evaluates to 4

2 Examples

2.1 Example: Fibonacci

This problem is from the Euler Project.

Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

Find the sum of all the even-valued terms in the sequence which do not exceed four million.

  #lang at-exp racket
  (require infix "while.rkt")
   
  (define-values (f g t) (values 1 2 0))
  (define sum f)
  @${
  while[ g< 4000000,
    when[ even?[g], sum:=sum+g];
    t := f + g;
    f := g;
    g := t];
  sum}

Here "while.rkt" is a file with this contents:
  #lang racket
  (provide while)
  ; SYNTAX (while expr body ...)
  ;   1. evaluate expr
  ;   2. if expr was true then evaluate body ... and go to 1.
  ;   3. return (void)
  (require (for-syntax syntax/parse))
  (define-syntax (while stx)
    (syntax-parse stx
      [(_while expr body ...)
       #'(let loop () (when expr body ... (loop)))]))

2.2 Example: Difference Between a Sum of Squares and the Square of a Sum

This problem is from the Euler Project.

The sum of the squares of the first ten natural numbers is, 1^2 + 2^2 + ... + 10^2 = 385 The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)^2 = 552 = 3025 Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 - 385 = 2640.

Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

  #lang at-exp racket
  (require infix "while.rkt")
   
  (define n 0)
  (define ns 0)
  (define squares 0)
  (define sum 0)
  @${
  sum:=0;
  while[ n<100,
    n := n+1;
    ns := ns+n;
    squares := squares + n^2];
  ns^2-squares
  }

The example above also shows that Scribble syntax can be used.

2.3 Example: Pythagorean Triplets

This example is from the Euler Project.

A Pythagorean triplet is a set of three natural numbers, a,b,c for which, a^2 + b^2 = c^2 For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.

There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc.

  #lang at-exp racket
  (require infix)
   
  (let-values ([(a b c) (values 0 0 0)])
    (let/cc return
      (for ([k (in-range 1 100)])
        (for ([m (in-range 2 1000)])
          (for ([n (in-range 1 m)])
            @${ a := k* 2*m*n;
                b := k* (m^2 - n^2);
                c := k* (m^2 + n^2);
                when[ a+b+c = 1000,
                   display[{{k,m,n}, {a,b,c}}];
                   newline[];
                   return[a*b*c] ]})))))

2.4 Example: Miller Rabin Primality Test

This example was inspired by Programming Praxis:

http://programmingpraxis.com/2009/05/01/primality-checking/

  #lang at-exp racket
  (require infix)
  (require (only-in math/base random-integer))
   
  (define (factor2 n)
    ; return r and s, s.t n = 2^r * s where s odd
    ; invariant: n = 2^r * s
    (let loop ([r 0] [s n])
      (let-values ([(q r) (quotient/remainder s 2)])
        (if (zero? r)
            (loop (+ r 1) q)
            (values r s)))))
   
  (define (miller-rabin n)
    ; Input: n odd
    (define (mod x) (modulo x n))
    (define (expt x m)
      (cond [(zero? m) 1]
            [(even? m) @${mod[sqr[x^(m/2)] ]}]
            [(odd? m)  @${mod[x*x^(m-1)]}]))
    (define (check? a)
      (let-values ([(r s) (factor2 (sub1 n))])
        ; is a^s congruent to 1 or -1 modulo n ?
        (and @${member[a^s,{1,mod[-1]}]} #t)))
    (andmap check?
            (build-list 50 (λ (_) (+ 2 (random-integer 0 (- n 3)))))))
   
  (define (prime? n)
    (cond [(< n 2) #f]
          [(= n 2) #t]
          [(even? n) #f]
          [else (miller-rabin n)]))
   
  (prime? @${2^89-1})